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Fast crack propagation by surface diffusion
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We present a continuum theory which describes the fast growth of a crack by surface diffusion. This
mechanism overcomes the usual cusp singularity by a self-consistent selection of the crack tip radius. It
predicts the saturation of the steady state crack velocity appreciably below the Rayleigh speed and tip blunting.
Furthermore, it includes the possibility of a tip splitting instability for high applied tensions.
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I. INTRODUCTION previously been studied by Stevens and Duftdl who as-
sumed arad hoccrack shape which is not found by solving
One of the most challenging puzzles in nonequilibriumthe full free boundary problem and requires mass transport
physics and materials science is the phenomenon of fracturever large scales. Therefore, their model cannot describe the
It is important for the vast field of material failure and prob- usual fast crack growth.
ably also for friction processefl]. Despite its relevance ~ Our basic mechanism is related to the Asaro-Tiller-
even the motion of a single crack is poorly understgpfl ~ Grinfeld (ATG) instability [8], which predicts a morphologi-
Experimentally, the maximum attained crack velocities arecal instability of a uniaxially stressed solid interface due to
far lower than the theoretically expected Rayleigh sg@dd  surface diffusion. Relatively long-wave perturbations of the
Beyond a critical velocity, a so far unpredictable tip splitting interface lead to a reduction of the elastic energy of the sys-
of the crack can happen and produce strange oscillations &M, whereas short-wave corrugations are hampered by sur-
the crack speef#]. face energy. In the long time behavior, deep grooves can
The classical theorid8] are based on the linear theory of form, producing shapes similar to crackg10]. According
elasticity and on an integral energy balance in the vicinity ofto previous theories, which used only tisatic theory of
an infinitely sharp crack tip. However, a more detailed ap-elasticity, the notches propagate with increasing velocity and
proach based on equations of motion for the crack shape @ecreasing tip radius and collapse to a finite-time cusp sin-
needed to describe the intriguing spectrum of phenomengularity. Similar to crack dynamics the lack of tip radius
near the crack tip. Hence, the curvature of the crack tip i$election becomes obvious, and already shows the close re-
required as a new relevant dynamical variable which alsdationship between the ATG instability and crack propaga-
allows to avoid stress singularities. We emphasize that, ifion.
contrast to models which describe crack propagation by bond Usually, it is believed that surface diffusion is slow, but,
breaking at the infinitely sharp tip, growth with a finite tip Surprisingly enough, it should not be ignored even in fast
radius always requires a transport mechanism in order tfacture processes. Our main idea is that surface diffusion is
preserve the shageee Fig. 1 Recently it was proposed that driven by the strong gradient of the chemical potential in the
this lengthscale is dynamically selected by the threshold ofiP region. This can be a very efficient mechanism for crack
plastic deformations in the tip regid®]. Unfortunately, ap-
proaches of this typésee, also, Refd.3,6]) require the in-
troduction of dynamic theories of plasticity which are usu-
ally much more speculative and less verified than the
ordinary linear theory of elasticity. 1t
Here we demonstrate that thieear theory of elasticitys -
sufficient to describe consistently crack propagation, driven &
by surface diffusioralong the crack surfaces. Of course, in =
many situations plasticity is very important, but the beauty of
our approach is that it predicts, in a simple and well con- a4t
trolled continuum theory, steady state crack growth, the tip
splitting instability and also slow deformations of already
existing cracks. The goal of this paper is to present a com-
pletely new d_escrlptlon o_f crack propagation .bycmsustent 5 4 3 - i
set of equations of motion. We focus our interest on the 37/7'0
generic features and qualitative predictions of this approach.
Usually, many complicated inelastic processes happen in a FiG. 1. Calculated shape of the cragkithout elastic displace-
zone around the crack tip. If one assumes that this procesfients driven by surface diffusion foA =2. The advance of the
zone is relatively thin, then one can try to describe massrack in the positivex direction is indicated by the dashed curve.
transport phenomengtfectivelyby surface diffusion. This requires the redistribution of matter along the crack by a trans-
The idea of crack propagation by surface diffusion hasport mechanism.
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propagation if the transport length is sufficiently small. Ad- =1/«(0). Then from symmetry and the definition of the tip
ditionally, energy release and strong dissipation bring theurvature = (r2+2r'?—rr")/(r?>+r’?)%2, the natural con-
local temperature close to the melting tempera{rte12.  ditionsr’(0)=r"(0)=0 arise. Integration over the upper in-
This drastically increases the surface diffusion coefficienterface#>0 requires the suppression of two growing expo-
and makes fast crack propagation essentially independent egntials at the tail, which imposes two boundary conditions.

the outside temperature. For a given external loading, these conditions can be fulfilled
by a proper selection of the tip radiug and growth velocity
Il. STEADY STATE CRACK GROWTH v. By this argument the situation seems to be fully described.

. . o .. However, as we mentioned already earlier, the usestétc
We use a two-dimensional plane-strain situation Witheory of elasticity does not allow a selection of the tip ra-
mode | loading to describe crack propagatiGh dius. The reason is that both contributions to the chemical
On the surfaces of the crack the normal stressand the potential, surface energy..~«, and elastic energyuq

shear stressr,, vanish, Whereas the tgngential SU@BS. ;2 pehave asal close to the tip: In the tip approximation,
usually does not. The chemical potential at the interface IStresses behave k]

given by

1-12 ) K
p=0| —e—or,—ax|. 1) O'i,:rT,zfij(B), 4

Here « is the surface energy is the curvature of the inter- i i . ; ]
face and() is the atomic volumeE andv are Young’s modu-  With the static stress intensity factidr- o..LY? whereo., is

lus and Poisson ratio, respectively. Nonhydrostatic stressé§€ applied remote stress ahds the macroscopic length of
drive a surface flux proportional to the gradients of thethe crack,L>ro, which is not considered here. Instead we
chemical potential along the surface; in turn the normal ve2SSUmeK to be kept fixed. The universal stress distribution

locity equals the divergence of this flux due to conservatiorfij depends only on the orientation relative to the crggk

of material, The asymptotic distributiofd) is valid far away from the tip,
ro<r<<L, but it gives the correct scaling of stresses also on
D #u the crack surface~r . Therefore, a dimensionless rescaling
UnT T L0 E’ 2 of all lengthscales, e.gr,=r/r,, and of the growth velocity

v=uvr3/D leaves the equation of motion invariant and, thus,

whered/ ds denotes the tangential derivative abddimen-  cannot determine the lengthscale Consequently, a steady
sion nfs™1) is proportional to the surface diffusion coeffi- state solution does not exist. This is the reason for the al-
cient. (It is related to the usual surface diffusion coefficientready mentioned cusp singularity of the ATG instability.
D by D=D0?5a/kT. Here s is the number of atoms per ~ The main idea of this paper is based on the fact that a full
unit area of surfacek is the Boltzmann constant affdis the  elastodynamicdescription restores the selection of this
temperature. lengthscale. It is known that at least for higher crack speeds

First, we are interested in steady state solutions of théhe angular distributiom;; become strongly dependent on the
equation of motion, with a crack moving in positixedirec-  ratio v/vg (vg is the Rayleigh speef3]). The dynamical
tion with velocityv (see Fig. J; In comoving polar coordi- stress intensity factoK,, is related to the static one used
nates,x=r(6) cosf,y=r(6) sinf, the steady state equation here by an extra velocity dependent functigfv/vg),

for the shape (6) reads after one integration of E@), Kayn=Kg(v/vg). The crucial observation is, that velocity
appears now in two different combinations in the equation of
i D 1 du motion, urS/D andv/vg. Thus, by the introduction of the
vrsinf=— — ——. 3 :
aQ \f25¢72 d6 new parametev/vg, a selection of botlw andr, happens.
From these general arguments we conclude that fast
Generally speaking, this, together with Ed), is a compli- ~ steady state crack propagation by surface diffusion is indeed

cated, nonlinear third-order equation with nonlocal contribu-Possible. However, the exact solution of the problem is tech-
tions arising from the elastic fie|d3, SinoeT depends on the nica”y very dlfﬂCUIt, because it requires the solution of an
entire shape. elastodynamic problem for ampriori unknown crack shape.

In the tail region stresses decay and the shape equation T$1e bulk equations of elasticity
a third-order linear differential equatiddy” =vy with two
growing (and oscillating and one decaying solution. Only daj;
the latter,y(x— —) =A exi{(u/D)"*], asymptotically de- ax, =pu; )
scribes physical shapes and is allowed. Let us focus on sym-
metrical solutionsy (0)=r(— 6), and start integration at the _ .
crack tip #=0. Since the physical properties, curvature and®'® subject to the _bon_mdary conditions on the crack surface
stresses, do not depend on the choice of coordinate syste@'?ﬁurface of discontinuity[3]
but only on the crack shape, we can arbitrarily choo&g _
=0)=ry, with the a priori unknown tip radiusrg, OintpUv,=0, (6)
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with the mass density and the elastic displacement fiald. 0.45
This is just the momentum balance equation on the free sur- 0.4
face which moves with normal velocity,, . Finally, the ex-
pression for the chemical potential on the crack surface 0.35 1
should also be corrected compared to the static case 03
) 5 o025

=3 ol — 3 pul — ak). (7) > 02
Equations(5)—(7) together with surface diffusion, Ed2), 0.15
and given loading configuration describe the crack propaga- 04
tion in our model. We note that inertial effects appear not '
only in the bulk equations of elasticity but also in the bound- 0.05 |
ary conditions and in the expression for the chemical poten- 0 s s s
tial. All these effects lead to the appearance of the parameter 1 15 2 25 3 35 4 45
(v/vg)? in the problem compared to the quasistatic descrip- A
tion. ) ) ) FIG. 2. Steady state velocity of the crack versus dimensionless

The preceding equatiort5)—(7) can be derived from the  griying forceA.

Lagrangian

1 1 Now Eg. (3), together with Egs(1) and (9), is a closed
g:j (—pUiz——UijUij dv—f adS, (8)  third-order differential equation for the shap@) which can
v 2 2 S(1) be easily integrated numerically. It provides both the crack

, . . . shape(Fig. 1) and a selection af/vg andr as functions of

with V(t) being the time-dependent volume of the solid andy, o yimensionless driving forae=K?(1— v?)/2E«. The re-

S(t) its surface. The elastic equations and boundary condi: - P

- llow by th dit haS— [ £dt | ; ith Sults are given in Figs. 2 and 3.

tions follow by the condition tha§= J Ldt is stationary wit One of the main results is that the upper limit for the

respect to.va.riations of the diSp|61_CE3.m‘3‘F‘t and the chemi- steady state crack velocity is appreciable below the Rayleigh
cal potential is related to the variation gf with respect to speed, as known from experimental results. The instanta-
the interface positiofi13,14. Evaluation of the exact equa- haqys velocity in the nonsteady state regime can of course
t!ons of motion requires extended numerics, especially in theq -, higher valuei,12. For relatively low driving forces,
time-dependent case. the growth velocity increases with increasidg but for
higher values ofA, it even decreases. Simultaneously, the tip

Ill. THE LOCAL CRACK TIP MODEL becomes sharper at first, but then blunts again.
We simplify the problem in order to make further analyti-
cal progress and to expose the general idea of our approach. IV. STABILITY

It will turn out that one cannot describe all effects by this

approximation and further refinement is necessary, but the Although the decrease of the velocityas function ofA

main results are qualitatively very robust against changes dhight be naively understood as a sign of instability, the

the model. model itself is stable: We performed a straightforward but
We mimic the tangential stress byl@cal description in  tedious numerical stability analysis and found no unstable

the spirit of Eq.(4), as depending on the propagation veloc-modes. The point is, that only/vg decreases, buIrS/D

ity and only on the local properties of the interface. It takes

both the velocity dependence of the angular distribution and 1.8 . : : : : : .

the decrease of the dynamical stress intensity factor into ac

count,

16 |

» 14t .
o..=K[1—(v/vg)2cog 6/2) + (vIvg)? sin*6]/r 12 ol |
9 R
BN -
This form reflects the first-order transition of the principal = 44| i
stress directiord=0 for low velocities towards##0 as a <
function of v/vg [3]. The use of more sophisticated expres- 06| I
sions(e.g., the singular dynamical field in full detawould 04 | _
not provide a large gain, since, anyway local approximations 02 T e YyEYrerll
cannot lead to exact results. For the same reasons we als A
neglect inertial corrections to the boundary conditions in Eq. 0 : : : : : ' :
(6) and in the chemical potentidr). ! 15 2 25 3A 85 4 45 5
However, we have checked that a model with a continu-
ous transition in azimuthal stregeeplacement of sitd by FIG. 3. Dimensionless crack tip rading versus dimensionless
sirf@ in Eq. (9)] gives qualitatively the same results. driving forceA.
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increases. Only a decrease of this parameter, which appeats fracture energy by tip blunting, which eventually leads to
in combination with the dissipative coefficieDt would be a  the tip instability.
real sign of instability. At a first glance, fast crack propagation by surface diffu-
Nevertheless, our solution is subject to the ATG instabilitysion seems to be counterintuitive, since the diffusion process
above a critical threshold of the driving forde The desta- is usually believed to be slow. However, according to our
bilizing effects stem from the nonlocal elastic contributionstheory, the scale of velocity is set i and is independent
which we neglected in our model, but which are obviouslyon the diffusion coefficient. The length scale of the tip is set
present in the real problem. This can be proved by simpldy (D/vg)Y%. As we already noted, strong dissipation brings
dimensional analysis arguments: The characteristic wavéhe local crack tip temperature close to the melting tempera-
length of the ATG instability is>\~Ea/a§T [8]; in the tip  ture[11,12. The heat is convectively transported from the
region it reads\("P~r /A, Thus, as soon as a certain criti- hottest spot in the tip region towards the tail. Therefore, the
cal driving force A, is exceeded, the characteristic wave diffusion coefficientD is about 107 m?s™* [16] at the tip
length of instability fits into the tip region. The material in- and independent of the outside temperature. With
dependent numbek, is the threshold for the instability of ~1 Jm 2, the interatomic distanca~10 °m and vy
the steady state solution, wherels 1 is the Griffith point.  ~ 10° ms %, we conclude that the lengthscale of the tip is of
Since, according to the steady state solutiotyg is a uni-  order of atomic units. On this scale, our continuum descrip-
versal function of the dimensionless parametethe thresh- tion can be of course only qualitative.
old of instability in terms ob /vy is also essentially material ~ Even more important is the fact that the term “surface
independent. It is important to note that our steady state prediffusion” should not be taken too literally. Usually, many
dictions are valid only below the threshold of instability. complicated physical processes like a plastic bulk flow take
Thus, the main part or all of the decrease of velocity versuplace in a small zone around the tip. Assuming that this zone
A is screened by the instability. Beyond the instability point,is relatively thin, the mass transport caffectivelybe de-
the behavior of the system is governed by the full time-scribed by surface diffusion, where all the detailed informa-
dependent evolution. Hence we expect the ATG instability tdion about the process zone is hidden in the effective surface
be the relevant mechanism for the experimentally observediffusion coefficient. It can be much larger than the bare
microbranching instabilityf4,12]. In contrast to the long- surface diffusion coefficient. This is very similar to the dy-
wave instability[15], this instability is localized in the tip namics of the surface of a thin liquid film, where the Navier-
region and cannot be suppressed by convective effects. Stokes equation in the lubrication approximation reduces to a
diffusion equation for the interface profile; the effective dif-
V. CONCLUSION fusion coefficient increases cubically with the thickness of
the film [17]. The relevance of atomic redistribution close to
We have developed a self-consistent continuum model fothe crack surface is also confirmed by molecular dynamics
crack propagation in homogeneous media. Both ingredientsimulations[18].
of our theory, thdinear elasticitywhich is valid everywhere We admit that the direct application of our model to real
in the bulk andsurface diffusionwhich provides a mass brittle materials might be problematic and remains an open
transport and dissipative mechanism for crack propagatiorissue. The main goal of this paper is to introduce a well-
are well established. The model is essentially parameter freglefined theoretical model which contains explicitly mass
leading to the prediction that two dimensionless quantitiestransport and a dissipation mechanism in the process zone of
the crack velocity/vg and crack tip radiusy(vr/D)*are  the moving crack. Such a formulation, based on the mecha-
universal functions of the dimensionless driving forde  nism of surface diffusion, is presented here; the full set of
Strictly speaking, these functions still depend weakly on thenonlocal equations leading to a free boundary problem, is
Poisson ratio. We note that these statements, together witfiven by Egs.(2) and (5)—(7). Its solution is, in practice, a
the prediction of the tip instability above some critical veloc- major project which leads to extensive numerics and has not
ity, are based on the general structure of our theory and doeen accomplished so far. Instead, we have explored our
not involve the specific modeling of the surface stresses. Thgain ideas by introducing a local model of stresses and
specific results given in the figures should differ from exactsolved this simplified scenario. We believe that the used scal-
solutions only quantitatively. ing and counting arguments for this reduced description are
It is important to realize that our model does not contra-the same as for the full problem.
dict classical theorie$3], but contains more information.
This allows to cglculate both_ the crack velocity and the frac- ACKNOWLEDGMENTS
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